If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2+43p-261=0
a = 8; b = 43; c = -261;
Δ = b2-4ac
Δ = 432-4·8·(-261)
Δ = 10201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10201}=101$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-101}{2*8}=\frac{-144}{16} =-9 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+101}{2*8}=\frac{58}{16} =3+5/8 $
| 4x-8=4x+14 | | 8x6=5x+30 | | .6=n+6 | | –y–66=1 | | 9x+54=7x-6 | | 7p^2+10p-33=0 | | 5x−2x−3−9=x−12+3x+3x | | .n+6.5=3.7 | | −7.2(x−15.6)=−9 | | -2(n+7)=15n= | | 5p-15+7p=-30+63 | | 12m^2+5m-4=0 | | 21-b=11b= | | 57+(3x+7)=x | | -4-p=-2P= | | 5m^2+5m-4=0 | | .p-11=-5 | | 9-4g=-15g= | | .p-11=55 | | 0x3=72 | | 6p^2+23p-279=0 | | -3b+2=4b+ | | –u+92=1 | | 6y+12+6y=12 | | -9v+6=-10v | | 2/9x-4=2/3x= | | 57+r=67 | | 2x=42/5 | | -2y+17=-13y= | | 3n+7=28n= | | 4x^2+14x-79=0 | | 7(x+6+7x=9 |